Contents

Section 1 Introduction to Natural Products for Drug Discovery

Chapter 1 Natural Products as Drugs and Leads to Drugs: The Historical Perspective
David J. Newman and Gordon M. Cragg

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ancient History (>2900 BCE to 1800 CE)</td>
<td>3</td>
</tr>
<tr>
<td>2 The Initial Influence of Chemistry upon Drug Discovery</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Alkaloids</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Aspirin</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Digitalis</td>
<td>9</td>
</tr>
<tr>
<td>3 20th and 21st Century Drugs/Leads from Nature</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Antibacterial and Antifungal Antibiotics</td>
<td>10</td>
</tr>
<tr>
<td>3.2 Antiviral Agents</td>
<td>19</td>
</tr>
<tr>
<td>3.3 Natural Product Based Antitumour Agents</td>
<td>21</td>
</tr>
<tr>
<td>4 Final Comments</td>
<td>23</td>
</tr>
<tr>
<td>References</td>
<td>24</td>
</tr>
</tbody>
</table>

Chapter 2 Chemical Space and the Difference Between Natural Products and Synthetics
Sheo B. Singh and J. Chris Culberson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>28</td>
</tr>
<tr>
<td>2 Sources of Organic Compounds and Drug Leads</td>
<td>29</td>
</tr>
<tr>
<td>2.1 Natural Products</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Natural Product Derivatives</td>
<td>29</td>
</tr>
<tr>
<td>3 Synthetic Compounds</td>
<td>30</td>
</tr>
<tr>
<td>3.1 Synthetic Compound Libraries</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Combinatorial Libraries</td>
<td>30</td>
</tr>
</tbody>
</table>

RSC Biomolecular Sciences No. 18
Natural Product Chemistry for Drug Discovery
Edited by Antony D. Buss and Mark S. Butler
© Royal Society of Chemistry 2010
Published by the Royal Society of Chemistry, www.rsc.org
Chapter 3 Mechanism of Action Studies

James J. La Clair

1 Introduction
2 Some Like It Hot: Esperamicin A₁, Neocarzinostatin and Related Enediyne Antibiotics
3 To Catch a Mockingbird: Taxol, Epothilone and the Microtubule
4 Notorious: Jasplakinolide, Alias Jaspamide and Actin
5 Invasion of the Pathway Snatchers: Artemisinin
6 Once Upon a Time in the Immune System: FK-506, Cyclosporin A and Rapamycin
7 Back to the Cytoskeleton: the Phorboxazoles
8 It’s a Wonderful Target: VTPase and its Targeting by Apicularen A, Salicylihalamide A and Palmerolide A
9 Double Indemnity: Bistramide A
10 The Matrix: the Pladienolides and Splicing Factor SF3b
11 The Unusual Suspects: (+)-Avrainvillamide
12 Close Encounters of a Third Kind: Ammosamides, Blebbestatin and Myosin
13 The End
References
Section 2 Sources of Compounds

Chapter 4 The Convention on Biological Diversity and its Impact on Natural Product Research
Geoffrey A. Cordell

1 Introduction 81
2 Historical Perspective 85
3 The Convention on Biological Diversity 87
4 Implementation and Regulatory Outcomes of the CBD 92
5 Assessment of Impact 95
 5.1 An Overview and Some Examples 95
 5.2 An Informal Survey 100
 5.3 Survey Results 101
 5.4 Survey Overview 116
6 The TRIPS Agreement and the CBD 116
7 Other Aspects and Outcomes 123
 7.1 The International Cooperative Biodiversity Group Programme 125
8 Some Recommendations 127
9 A Web of Interconnectedness 130
10 A Different World 131
11 Conclusions 133
Acknowledgements 134
References 135

Chapter 5 Plants: Revamping the Oldest Source of Medicines with Modern Science
Giovanni Appendino and Federica Pollastro

1 Introduction 140
2 Plant Secondary Metabolites vs. Secondary Metabolites of Other Origin 143
3 Unnatural Sources of Plant Secondary Metabolites 146
4 Critical Issues in Plant-based Natural Product Drug Discovery 149
 4.1 Intellectual Property (IP) Issues 149
 4.2 Pleiotropy and Synergy 151
 4.3 Extract Libraries vs. Fraction (Peak) Libraries vs. Compound Libraries 153
 4.4 Removal of Interfering Compounds 155
5 Selection Strategies for Plant-Based Natural Product Drug Discovery 156
 5.1 Ethnopharmacology 156
Chapter 6 Macromarines: A Selective Account of the Potential of Marine Sponges, Molluscs, Soft Corals and Tunicates as a Source of Therapeutically Important Molecular Structures
Jennifer Carroll and Phillip Crews

1 Introduction
1.1 Macroorganisms: Outstanding Success in Producing Viable Drug Leads
1.2 Setting that Ara A and Ara C Story Straight
1.3 The Potential Role of Invertebrate Associated Microorganisms and Secondary Metabolite Production
1.4 Macromarine Evolution

2 Sponges
2.1 Natural History of Sponges—a Primitive Phylum with Remarkable Biosynthetic Capabilities

3 Molluscs
3.1 Natural History of Molluscs—the Source of Numerous Preclinical Drug Leads

4 Soft Corals
4.1 Natural History of Cnidarians—the “Stinging Nettle” of the Sea

5 Tunicates
5.1 Natural History of Tunicates—Our Closest Marine Invertebrate Relations

6 Conclusions
References

Chapter 7 Microorganisms: Their Role in the Discovery and Development of Medicines
Cedric Pearce, Peter Eckard, Iris Gruen-Wollny and Friedrich G. Hansske

1 Introduction
2 Bacteria
3 Fungi
4 Terrestrial and Marine Microorganisms
Contents

5 Microbial Culture Collections 222
6 Evidence for “Uncultivable” Microbes 223
7 Metagenomic Approach to Access Uncultivable Microbes 224
8 Culturing Techniques to Produce Secondary Metabolites 225
9 Evidence for New Biosynthetic Pathways in Known Microbes 227
10 Genetic Pathway Engineering and Modulation of Post-translational Modification to Generate Novel Compounds 227
11 Microbial Secondary Metabolites with Unique Biological Activity and Chemical Diversity 228
12 Microbial Secondary Metabolites with Unique Pharmacological Activity 231
13 Conclusions 232

Structures Discussed in Tables 7.2 and 7.3 233
References 236

Section 3 Advances in Technology

Chapter 8 Advances in Biological Screening for Lead Discovery
Christian N. Parker, Johannes Ottl, Daniela Gabriel and Ji-Hu Zhang

1 Introduction 245
 1.1 Natural Product Screening and the Development of HTS 247
 1.2 Chapter Objectives 247
2 Types of HTS Assays 247
 2.1 In vitro Biochemical Assays 248
 2.2 Cell-based Assays 255
 2.3 Modelling to Identify False Positives and Negatives 261
3 Emerging Trends 262
 3.1 New HTS Approaches 262
Acknowledgements 265
References 265

Chapter 9 Advances in Instrumentation, Automation, Dereplication and Prefractionation
Tim S. Bugni, Mary Kay Harper, Malcolm W.B. McCulloch and Emily L. Whitson

1 Introduction 272
2 Dereplication 274
Chapter 10 Natural Product Combinatorial Biosynthesis: Promises and Realities
Daniel W. Udowy

1 Introduction
2 A Brief History of Natural Product Biosynthesis
3 Promises
4 Realities
5 Future Biotechnological Promises
References

Section 4 Natural Products in Clinical Development

Chapter 11 A Snapshot of Natural Product-Derived Compounds in Late Stage Clinical Development at the End of 2008
Mark S. Butler

1 Introduction
2 NP-derived Drugs Launched in the Last Five Years
3 Late Stage NDAs and Clinical Candidates
 3.1 Antibacterial
 3.2 Oncology
 3.3 Other Therapeutic Areas
4 Conclusions and Outlook
References
Chapter 12 From Natural Product to Clinical Trials: NPI-0052 (Salinosporamide A), a Marine Actinomycete-Derived Anticancer Agent
Kin S. Lam, G. Kenneth Lloyd, Saskia T. C. Neuteboom, Michael A. Palladino, Kobi M. Sethna, Matthew A. Spear and Barbara C. Potts

1 Introduction
1.1 Bioprospecting Marine Actinomycetes and the Discovery of Salinispora and NPI-0052
1.2 The Ubiquitin–Proteasome System as a Target for Drug Development
2 Mechanism of Action
3 Microbiology of Salinispora tropica, Fermentation and Scale-up
4 Structural Biology and Structure–Activity Relationship Studies
5 Translational Biology
6 IND-Enabling Studies of NPI-0052
7 API Manufacturing
8 Formulation Development and Drug Product Manufacturing
9 Pharmacodynamics
10 Pharmacokinetics
11 Clinical Trials
12 Concluding Remarks
Acknowledgements
References

Chapter 13 From Natural Product to Clinical Trials: Bevirimat, a Plant-Derived Anti-AIDS Drug
Keduo Qian, Theodore J. Nitz, Donglei Yu, Graham P. Allaway, Susan L. Morris-Natschke and Kuo-Hsiung Lee

1 Introduction
2 Bioactivity-directed Fractionation and Isolation
3 Lead Identification
4 Lead Optimisation and SAR Study
4.1 Modification of the BA Triterpene Skeleton
4.2 Modification on C-3 Position of BA
4.3 Introduction of C-28 Side Chain into BA
4.4 Bifunctional BA Analogues—Potential for Maturation Inhibitor Development
5 Mechanism of Action Studies of Bevirimat
Section 5 Case Studies of Marketed Natural Product-derived Drugs

Chapter 14 Daptomycin
Richard H. Baltz

1 Introduction 395
2 Discovery of A21987C and Daptomycin 396
 2.1 Enzymatic Cleavage of the Fatty Acid Side Chain 396
 2.2 Chemical Modifications of the A21978C Core Peptide 397
3 Biosynthesis 397
 3.1 Analysis of the Daptomycin Biosynthetic Gene Cluster 397
 3.2 Daptomycin Structure 398
4 Mechanism of Action Studies 399
 4.1 Daptomycin Resistant Mutants 400
5 Antibacterial Activities 401
 5.1 In vitro Activities 401
 5.2 In vivo Activities in Animal Models 402
6 Clinical Studies 402
 6.1 Eli Lilly and Company 402
 6.2 The Passing of the Baton 403
 6.3 Cubist Pharmaceuticals 403
7 Lessons Learned 404
8 Epilogue 405
References 405

Chapter 15 Micafungin
Akiko Fujie, Shuichi Tawara and Seiji Hashimoto

1 Introduction 410
 1.1 New Antifungal Compounds Discovered at Fujisawa (a Predecessor of Astellas Pharma Inc.) 411
 1.2 1,3-β-Glucan Synthase Inhibition and Echinocandins 413
2 From the Discovery of FR901379 to Clinical Studies of FK463 (Micafungin) 414
 2.1 Discovery of FR901379 414
 2.2 Generation of Lead Compound FR131535 418
2.3 Lead Optimisation Leading to the Discovery of FK46312,13 421
2.4 Preclinical Studies of FK463 425
2.5 Industrial Manufacturing of Micafungin 426
2.6 Clinical Studies of FK463 426
3 Conclusions 427
Acknowledgements 427
References 427

Subject Index 429